Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems
نویسندگان
چکیده
In this paper we analyze the bi-conjugate gradient algorithm in finite precision arithmetic, and suggest reasons for its often observed robustness. By using a tridiagonal structure, which is preserved by the finite precision bi-conjugate gradient iteration, we are able to bound its residual norm by a minimum polynomial of a perturbed matrix (i.e. the residual norm of the exact GMRES applied to a perturbed matrix) multiplied by an amplification factor. This shows that occurrence of near-breakdowns or loss of biorthogonality does not necessarily deter convergence of the residuals provided that the amplification factor remains bounded. Numerical examples are given to gain insights into these bounds.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملThe Use of a Cgs Method for the Convective Diffusion Problem∗
This paper introduces a new algorithm which solves nonsymmetric sparse linear systems of equations, by the conjugate gradient squared (CGS) method combined with some preconditionings. The algorithm is dramatically superior to biconjugate gradient (BCG) algorithm, although it is a variant of the BCG algorithm. The algorithm is also amenable for implementing on parallel computers. We report on so...
متن کاملCR Variants of Hybrid Bi-CG Methods for Solving Linear Systems with Nonsymmetric Matrices
s at ICCAM 2008 CR Variants of Hybrid Bi-CG Methods for Solving Linear Systems with Nonsymmetric Matrices Kuniyoshi Abe Gifu Shotoku University 1-38, Nakauzura, Gifu, 500-8288 Japan [email protected] Joint work with: S. Fujino By Krylov subspace methods, we are solving a large sparse linear system Ax = b, where A stand for an n-by-n matrix, and x and b are n-vectors, respectively. The Bi-C...
متن کاملApplication of Iterative Methods for Solving Nonsymmetric Linear Systems in the Simulation of Semiconductor Processing
This paper presents a systematic comparison of recently developed iterative methods for solving nonsymmetric linear equations arising from the numerical simulation of semiconductor processing. A non comprehensive survey of the literature concerning iterative solvers is given including theoretical studies as well as current articles on practical applications. In particular, we consider the conju...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000